Copied to
clipboard

G = C4211Q8order 128 = 27

11st semidirect product of C42 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4211Q8, C23.566C24, C22.2552- 1+4, C22.3402+ 1+4, C428C4.41C2, C425C4.13C2, (C2×C42).630C22, (C22×C4).171C23, C22.140(C22×Q8), (C22×Q8).171C22, C2.55(C22.32C24), C23.78C23.17C2, C2.C42.280C22, C23.63C23.39C2, C23.67C23.51C2, C23.65C23.70C2, C23.83C23.28C2, C23.81C23.30C2, C2.66(C22.36C24), C2.55(C22.33C24), C2.27(C23.41C23), C2.43(C23.37C23), C2.37(C22.35C24), (C4×C4⋊C4).79C2, (C2×C4).136(C2×Q8), (C2×C4).186(C4○D4), (C2×C4⋊C4).387C22, C22.433(C2×C4○D4), SmallGroup(128,1398)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4211Q8
C1C2C22C23C22×C4C2.C42C23.67C23 — C4211Q8
C1C23 — C4211Q8
C1C23 — C4211Q8
C1C23 — C4211Q8

Generators and relations for C4211Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, cac-1=ab2, dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=c-1 >

Subgroups: 324 in 184 conjugacy classes, 96 normal (82 characteristic)
C1, C2, C4, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C2×Q8, C2.C42, C2×C42, C2×C4⋊C4, C22×Q8, C4×C4⋊C4, C428C4, C425C4, C23.63C23, C23.65C23, C23.67C23, C23.78C23, C23.81C23, C23.83C23, C4211Q8
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.37C23, C22.32C24, C22.33C24, C22.35C24, C22.36C24, C23.41C23, C4211Q8

Smallest permutation representation of C4211Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 13 42 79)(2 14 43 80)(3 15 44 77)(4 16 41 78)(5 100 72 34)(6 97 69 35)(7 98 70 36)(8 99 71 33)(9 105 75 46)(10 106 76 47)(11 107 73 48)(12 108 74 45)(17 115 83 56)(18 116 84 53)(19 113 81 54)(20 114 82 55)(21 52 87 111)(22 49 88 112)(23 50 85 109)(24 51 86 110)(25 121 91 62)(26 122 92 63)(27 123 89 64)(28 124 90 61)(29 58 95 117)(30 59 96 118)(31 60 93 119)(32 57 94 120)(37 67 103 127)(38 68 104 128)(39 65 101 125)(40 66 102 126)
(1 83 75 109)(2 18 76 51)(3 81 73 111)(4 20 74 49)(5 32 102 61)(6 95 103 121)(7 30 104 63)(8 93 101 123)(9 50 42 17)(10 110 43 84)(11 52 44 19)(12 112 41 82)(13 54 46 21)(14 114 47 88)(15 56 48 23)(16 116 45 86)(22 80 55 106)(24 78 53 108)(25 33 58 65)(26 100 59 126)(27 35 60 67)(28 98 57 128)(29 37 62 69)(31 39 64 71)(34 118 66 92)(36 120 68 90)(38 122 70 96)(40 124 72 94)(77 115 107 85)(79 113 105 87)(89 97 119 127)(91 99 117 125)
(1 91 75 117)(2 90 76 120)(3 89 73 119)(4 92 74 118)(5 114 102 88)(6 113 103 87)(7 116 104 86)(8 115 101 85)(9 58 42 25)(10 57 43 28)(11 60 44 27)(12 59 41 26)(13 62 46 29)(14 61 47 32)(15 64 48 31)(16 63 45 30)(17 65 50 33)(18 68 51 36)(19 67 52 35)(20 66 49 34)(21 69 54 37)(22 72 55 40)(23 71 56 39)(24 70 53 38)(77 123 107 93)(78 122 108 96)(79 121 105 95)(80 124 106 94)(81 127 111 97)(82 126 112 100)(83 125 109 99)(84 128 110 98)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,13,42,79)(2,14,43,80)(3,15,44,77)(4,16,41,78)(5,100,72,34)(6,97,69,35)(7,98,70,36)(8,99,71,33)(9,105,75,46)(10,106,76,47)(11,107,73,48)(12,108,74,45)(17,115,83,56)(18,116,84,53)(19,113,81,54)(20,114,82,55)(21,52,87,111)(22,49,88,112)(23,50,85,109)(24,51,86,110)(25,121,91,62)(26,122,92,63)(27,123,89,64)(28,124,90,61)(29,58,95,117)(30,59,96,118)(31,60,93,119)(32,57,94,120)(37,67,103,127)(38,68,104,128)(39,65,101,125)(40,66,102,126), (1,83,75,109)(2,18,76,51)(3,81,73,111)(4,20,74,49)(5,32,102,61)(6,95,103,121)(7,30,104,63)(8,93,101,123)(9,50,42,17)(10,110,43,84)(11,52,44,19)(12,112,41,82)(13,54,46,21)(14,114,47,88)(15,56,48,23)(16,116,45,86)(22,80,55,106)(24,78,53,108)(25,33,58,65)(26,100,59,126)(27,35,60,67)(28,98,57,128)(29,37,62,69)(31,39,64,71)(34,118,66,92)(36,120,68,90)(38,122,70,96)(40,124,72,94)(77,115,107,85)(79,113,105,87)(89,97,119,127)(91,99,117,125), (1,91,75,117)(2,90,76,120)(3,89,73,119)(4,92,74,118)(5,114,102,88)(6,113,103,87)(7,116,104,86)(8,115,101,85)(9,58,42,25)(10,57,43,28)(11,60,44,27)(12,59,41,26)(13,62,46,29)(14,61,47,32)(15,64,48,31)(16,63,45,30)(17,65,50,33)(18,68,51,36)(19,67,52,35)(20,66,49,34)(21,69,54,37)(22,72,55,40)(23,71,56,39)(24,70,53,38)(77,123,107,93)(78,122,108,96)(79,121,105,95)(80,124,106,94)(81,127,111,97)(82,126,112,100)(83,125,109,99)(84,128,110,98)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,13,42,79)(2,14,43,80)(3,15,44,77)(4,16,41,78)(5,100,72,34)(6,97,69,35)(7,98,70,36)(8,99,71,33)(9,105,75,46)(10,106,76,47)(11,107,73,48)(12,108,74,45)(17,115,83,56)(18,116,84,53)(19,113,81,54)(20,114,82,55)(21,52,87,111)(22,49,88,112)(23,50,85,109)(24,51,86,110)(25,121,91,62)(26,122,92,63)(27,123,89,64)(28,124,90,61)(29,58,95,117)(30,59,96,118)(31,60,93,119)(32,57,94,120)(37,67,103,127)(38,68,104,128)(39,65,101,125)(40,66,102,126), (1,83,75,109)(2,18,76,51)(3,81,73,111)(4,20,74,49)(5,32,102,61)(6,95,103,121)(7,30,104,63)(8,93,101,123)(9,50,42,17)(10,110,43,84)(11,52,44,19)(12,112,41,82)(13,54,46,21)(14,114,47,88)(15,56,48,23)(16,116,45,86)(22,80,55,106)(24,78,53,108)(25,33,58,65)(26,100,59,126)(27,35,60,67)(28,98,57,128)(29,37,62,69)(31,39,64,71)(34,118,66,92)(36,120,68,90)(38,122,70,96)(40,124,72,94)(77,115,107,85)(79,113,105,87)(89,97,119,127)(91,99,117,125), (1,91,75,117)(2,90,76,120)(3,89,73,119)(4,92,74,118)(5,114,102,88)(6,113,103,87)(7,116,104,86)(8,115,101,85)(9,58,42,25)(10,57,43,28)(11,60,44,27)(12,59,41,26)(13,62,46,29)(14,61,47,32)(15,64,48,31)(16,63,45,30)(17,65,50,33)(18,68,51,36)(19,67,52,35)(20,66,49,34)(21,69,54,37)(22,72,55,40)(23,71,56,39)(24,70,53,38)(77,123,107,93)(78,122,108,96)(79,121,105,95)(80,124,106,94)(81,127,111,97)(82,126,112,100)(83,125,109,99)(84,128,110,98) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,13,42,79),(2,14,43,80),(3,15,44,77),(4,16,41,78),(5,100,72,34),(6,97,69,35),(7,98,70,36),(8,99,71,33),(9,105,75,46),(10,106,76,47),(11,107,73,48),(12,108,74,45),(17,115,83,56),(18,116,84,53),(19,113,81,54),(20,114,82,55),(21,52,87,111),(22,49,88,112),(23,50,85,109),(24,51,86,110),(25,121,91,62),(26,122,92,63),(27,123,89,64),(28,124,90,61),(29,58,95,117),(30,59,96,118),(31,60,93,119),(32,57,94,120),(37,67,103,127),(38,68,104,128),(39,65,101,125),(40,66,102,126)], [(1,83,75,109),(2,18,76,51),(3,81,73,111),(4,20,74,49),(5,32,102,61),(6,95,103,121),(7,30,104,63),(8,93,101,123),(9,50,42,17),(10,110,43,84),(11,52,44,19),(12,112,41,82),(13,54,46,21),(14,114,47,88),(15,56,48,23),(16,116,45,86),(22,80,55,106),(24,78,53,108),(25,33,58,65),(26,100,59,126),(27,35,60,67),(28,98,57,128),(29,37,62,69),(31,39,64,71),(34,118,66,92),(36,120,68,90),(38,122,70,96),(40,124,72,94),(77,115,107,85),(79,113,105,87),(89,97,119,127),(91,99,117,125)], [(1,91,75,117),(2,90,76,120),(3,89,73,119),(4,92,74,118),(5,114,102,88),(6,113,103,87),(7,116,104,86),(8,115,101,85),(9,58,42,25),(10,57,43,28),(11,60,44,27),(12,59,41,26),(13,62,46,29),(14,61,47,32),(15,64,48,31),(16,63,45,30),(17,65,50,33),(18,68,51,36),(19,67,52,35),(20,66,49,34),(21,69,54,37),(22,72,55,40),(23,71,56,39),(24,70,53,38),(77,123,107,93),(78,122,108,96),(79,121,105,95),(80,124,106,94),(81,127,111,97),(82,126,112,100),(83,125,109,99),(84,128,110,98)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4P4Q···4X
order12···244444···44···4
size11···122224···48···8

32 irreducible representations

dim11111111112244
type++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC4211Q8C4×C4⋊C4C428C4C425C4C23.63C23C23.65C23C23.67C23C23.78C23C23.81C23C23.83C23C42C2×C4C22C22
# reps11112112424822

Matrix representation of C4211Q8 in GL8(𝔽5)

41000000
01000000
00100000
00010000
00002202
00000200
00000430
00000103
,
20000000
02000000
00400000
00040000
00003300
00000200
00000424
00000103
,
40000000
31000000
00300000
00320000
00000010
00000202
00001000
00000103
,
10000000
01000000
00130000
00140000
00003214
00000033
00001331
00004424

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,2,4,1,0,0,0,0,0,0,3,0,0,0,0,0,2,0,0,3],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2,4,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,3],[4,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,3],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,3,0,1,4,0,0,0,0,2,0,3,4,0,0,0,0,1,3,3,2,0,0,0,0,4,3,1,4] >;

C4211Q8 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{11}Q_8
% in TeX

G:=Group("C4^2:11Q8");
// GroupNames label

G:=SmallGroup(128,1398);
// by ID

G=gap.SmallGroup(128,1398);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,456,758,723,352,185,136]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽